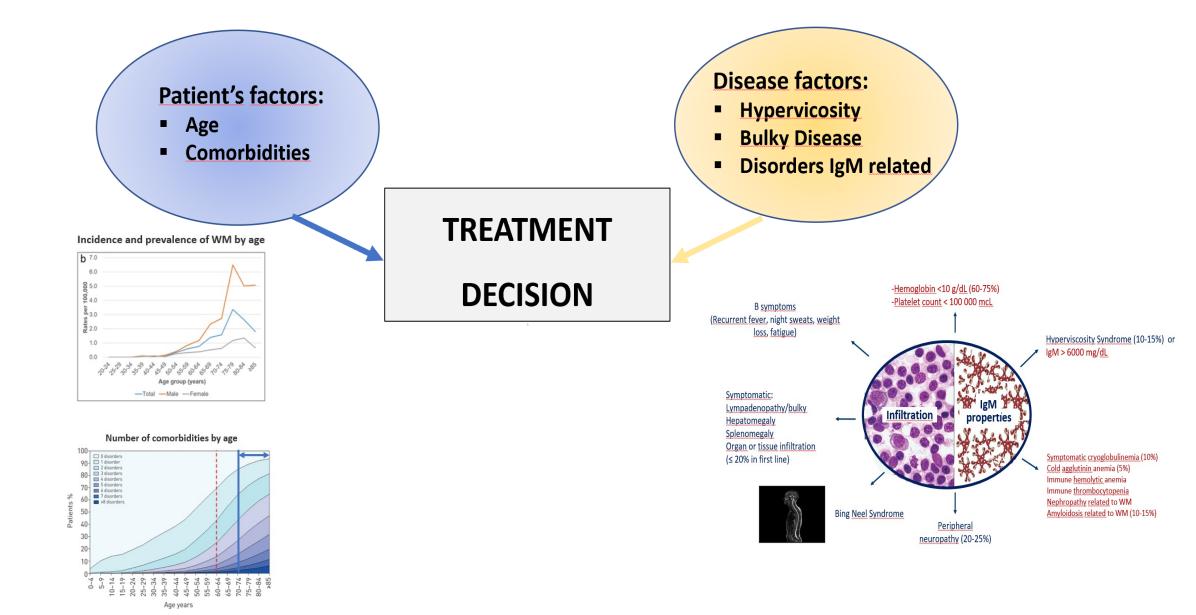
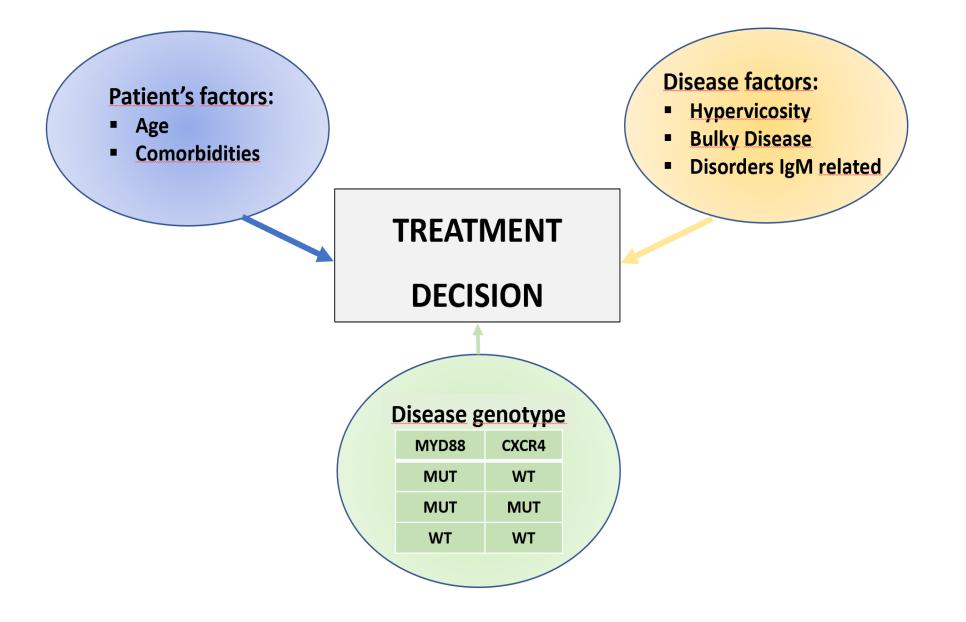
NELLE SINDROMI LINFOPROLIFERATIVE: La storia continua

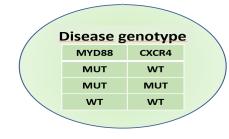
La Macroglobulinemia di Waldenstrom

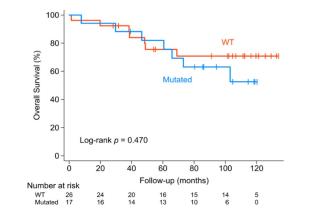

PROGRAMMA

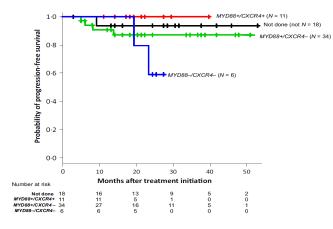
Alessandra Tedeschi Department of Hematology Niguarda Hospital Milano

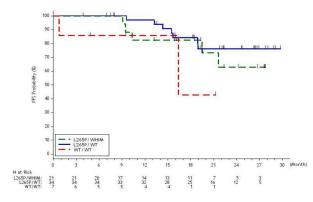

Alessandra Tedeschi COI

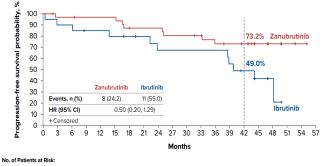
	Advisory Board	Speaker Bureau
Janssen	X	X
AbbVie	X	X
AstraZeneca	X	X
Beigene	X	X
Lilly	X	


Treatment Decision in WM


Treatment Decision in WM


Role of genotype in WM treatment


Bortezomib Rituximab First Line according to CXCR4 mut


Bendamustine Rituximab First Line

Impact of genotype with Ibrutinib

Zanubrutinib vs Ibrutinib: PFS in CXCR4 mut

 Zanubrutinib
 33
 31
 30
 30
 30
 26
 26
 26
 24
 23
 20
 19
 17
 10
 6
 3
 1
 0

 Ibrutinib
 20
 18
 16
 16
 15
 14
 13
 11
 11
 11
 9
 7
 4
 2
 0

Zanubrutinib in MYD88 WT

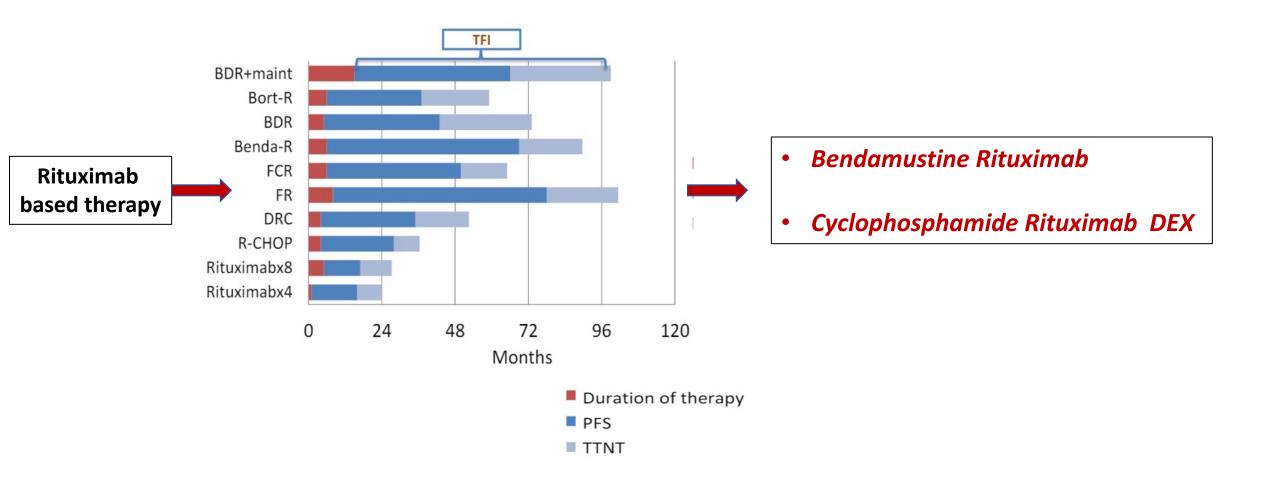
MRR: 65%
At 42 months:
PFS: 53.8% (95% Cl: 33.3, 70.6)
OS: 83.9% (95% CI: 62.6, 93.7)

First line treatment

Immuno-CHT

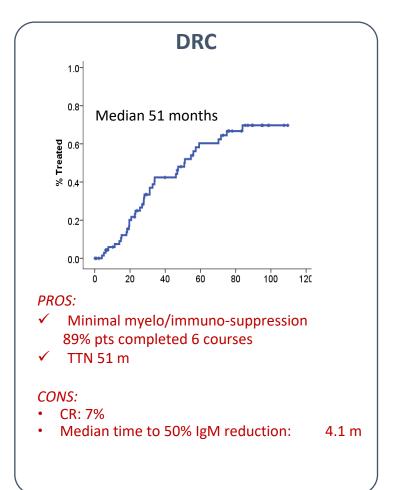
Benda Rituximab

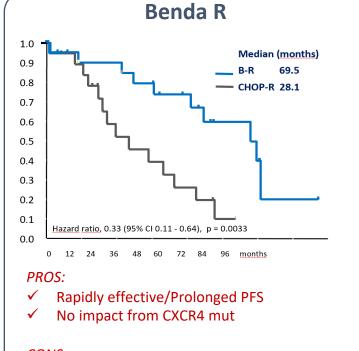
DRC


(Bortezomib-Rituximab)

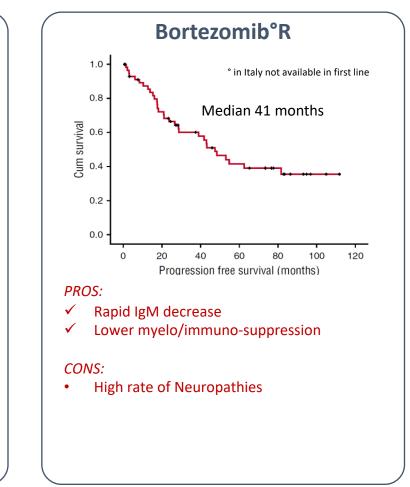
BTKi Only for pts unsuitable for immuno-CHT

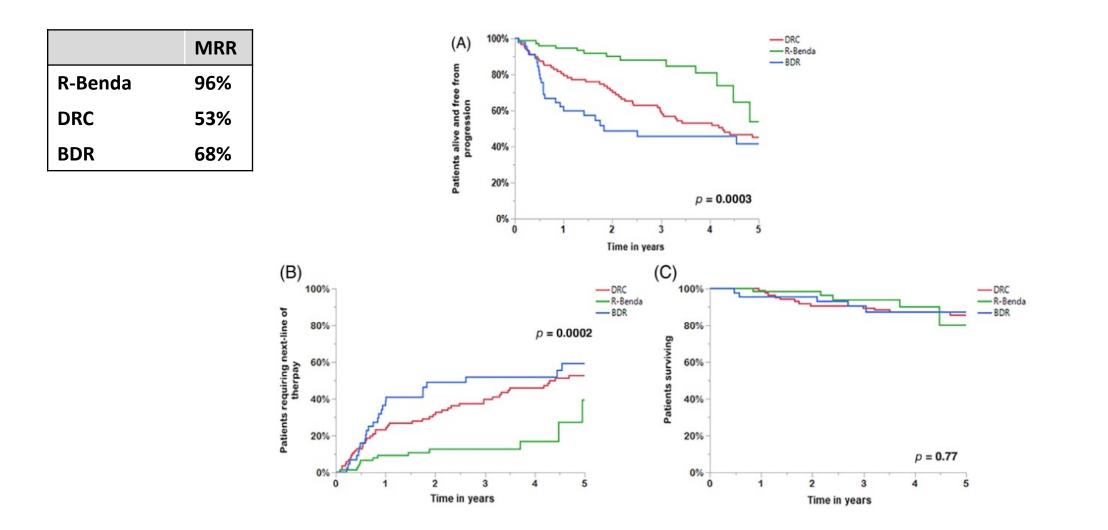
(Ibrutinib)°


Zanubrutinib


First Line fixed duration therapy in WM

WM TREATMENT: first line

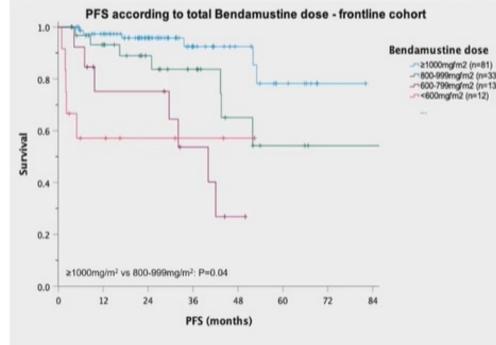

Rituximab Combination Treatment


CONS:

- Myelotoxicity/late infectious toxicities: dose reduction to 70 mg/sqm or 4 courses
- Secondary MDS/LAM (?): ~0-3%

DRC, Benda R or Bortezomib R?

Assessment of fixed-duration therapies for TN WM

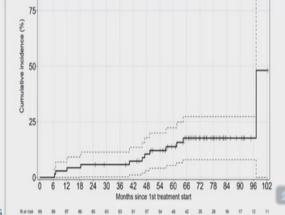

What if we reduce Benda dosage?

WM TREATMENT: first line

Bendamustine Rituximab

Outcomes according to Benda dosage

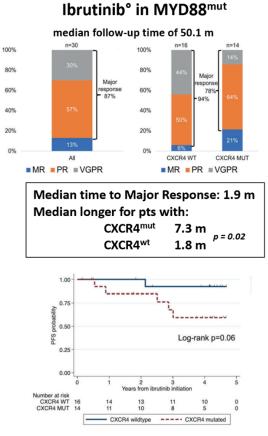
Dose category	Example dose schedule	E.g. total dose (mg/m²)
1. ≥1000 mg/m ²	90 mg/m ² for 6 cycles	1080 mg/m ²
2. 800-999 mg/m ²	70 mg/m ² for 6 cycles	840 mg/m ²
3. 600-799 mg/m ²	90 mg/m ² for 4 cycles	720 mg/m ²
4. <600 mg/m ²	70 mg/m ² for 4 cycles	560 mg/m ²

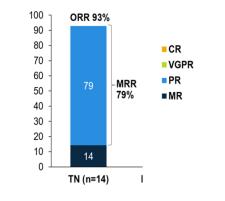

Late toxicities

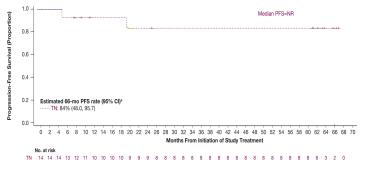
Type of Cytopenia	N	%	Duration (months) median (range)
Neutropenia	26	38%	9m (3-24)
Anemia	17	25%	6m (3-36)
Thrombocytopenia	11	16%	9m (3-36)

Long–lasting cytopenia occurred in 35 patients (51%)

Second malignancies: 12 patients


- 9 solid tumors (2 pancreas , 2 gastric, 1 colic, 1 oesophagus 1 lung, 1 skin, 1 breast)
- 3 myelodysplastic syndromes with 2 AML


Cumulative incidence of second malignancies of 17.66% [7.99-27.64] at 66 months


WM TREATMENT FIRST LINE TREATMENT

BTKi

Acalabrutinib

Owen R et al., 2022

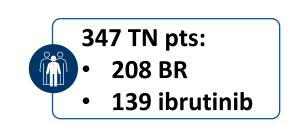
Aspen trial in MYD88^{mut}

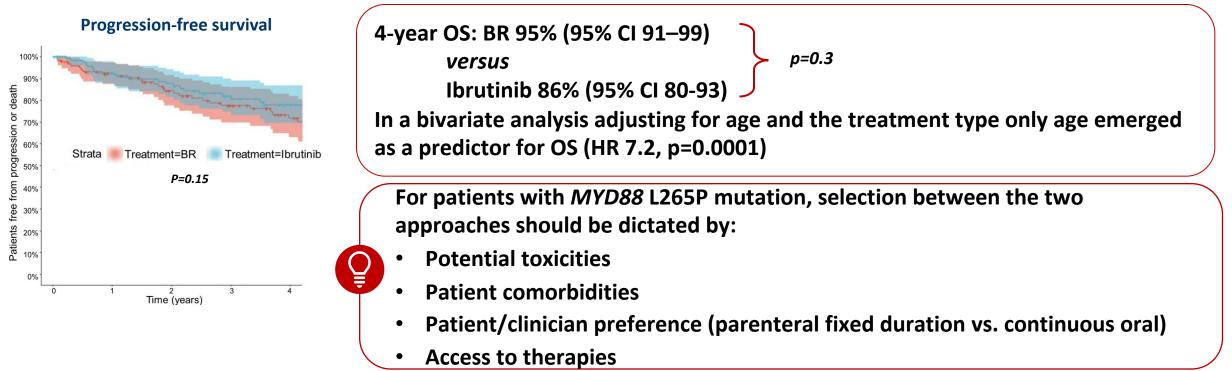
median follow-up time of 19.4 m

	TN		
	lbrutinib (n = 18)	Zanubrutinib (n = 19)	
Best overall response, n (%)			
CR	0 (0)	0 (0)	
VGPR	3 (17)	5 (26)	
PR	9 (50)	9 (47)	
MR	4 (22)	4 (21)	
SD	1 (6)	0 (0)	
PD	0 (0)	1 (5)	
Not evaluable*	1 (1)	0 (0)	
Response rates, % (95% CI)†			
VGPR or CR	17 (4-41)	26 (9-51)	
Р		NR	
MRR	67 (41-87)	74 (49-91)	
ORR	89 (65-99)	95 (74-100)	
Duration of CR/VGPR, mo			
Median (range)	NE (0+, 3+)	NE (0+, 22+)	
18-Mo event-free rate, % (95% CI)§	NE (NE, NE)	100 (NE, NE)	
Duration of major response, months	NE (3+, 28+)		
Median (range) 18-Mo event-free rate, % (95% CI)§	00 (NE, NE)	NE (0+, 25+) 80 (39-95)	
TO-IND EVENT-THEE Tate, % (95% CI)g	OU (INE, INE)	00 (39-93)	
PFS			
Median (range), mo	NE (0+, 31+)	NE (1, 31+)	
18-Mo event-free rate, % (95% CI)§	94 (63-99)	78 (52-91)	

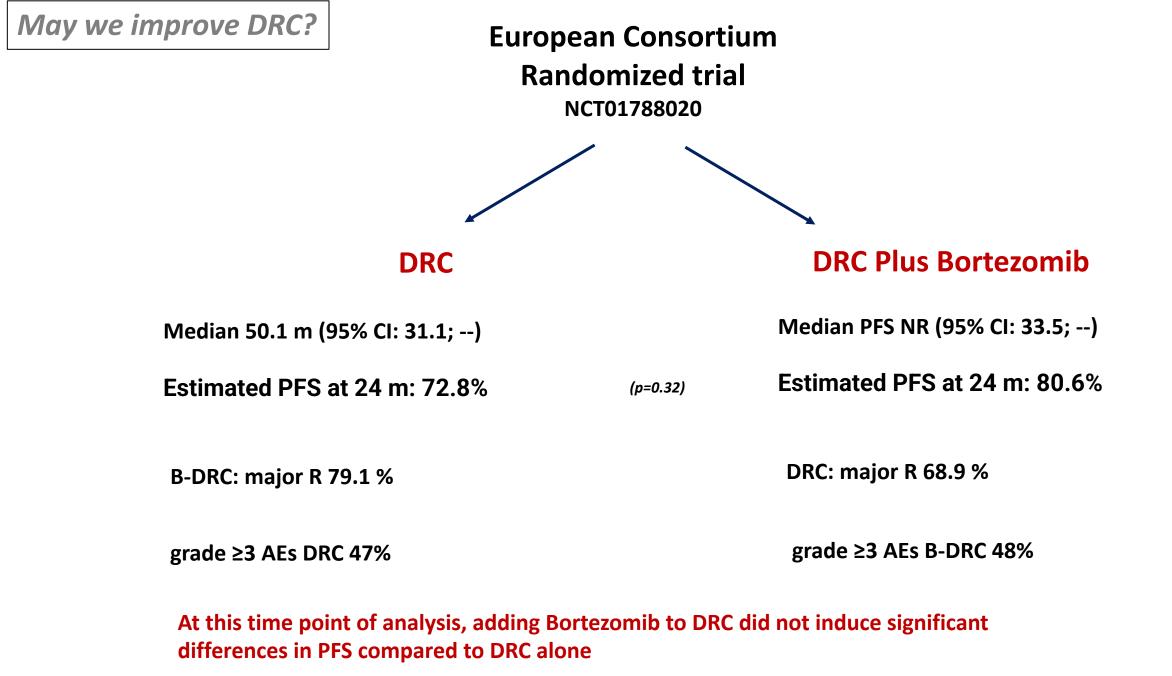
Tam CS et al., 2020

Castillo et al., 2021

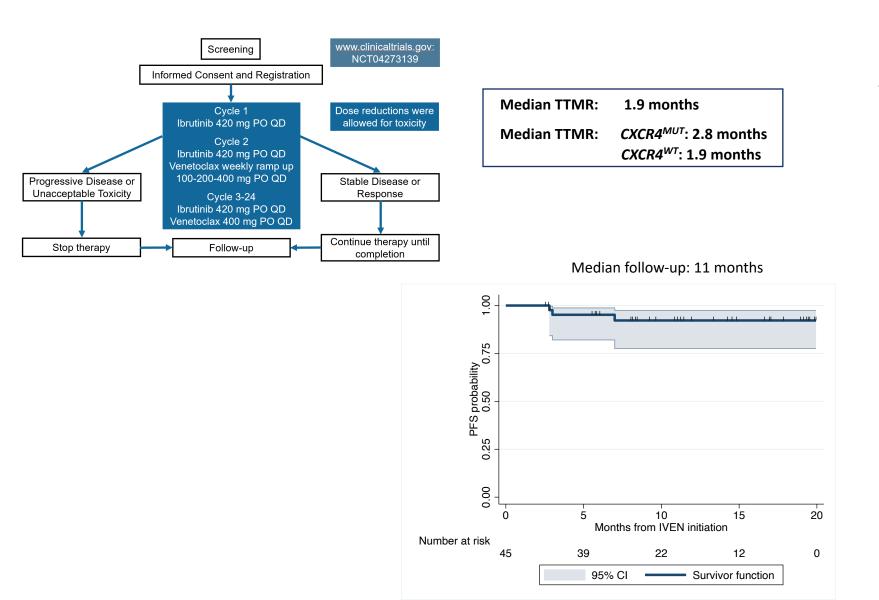

° approved by EMA in unfit PTS not reimbursed in Italy

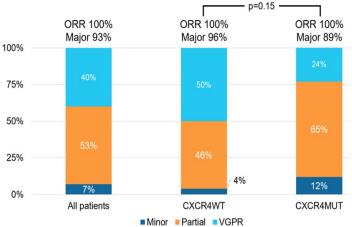

Ibrutinib or Benda R in TN WM?

Multi-institutional, international study in Europe and the USA


Median follow-up: 4.2 years

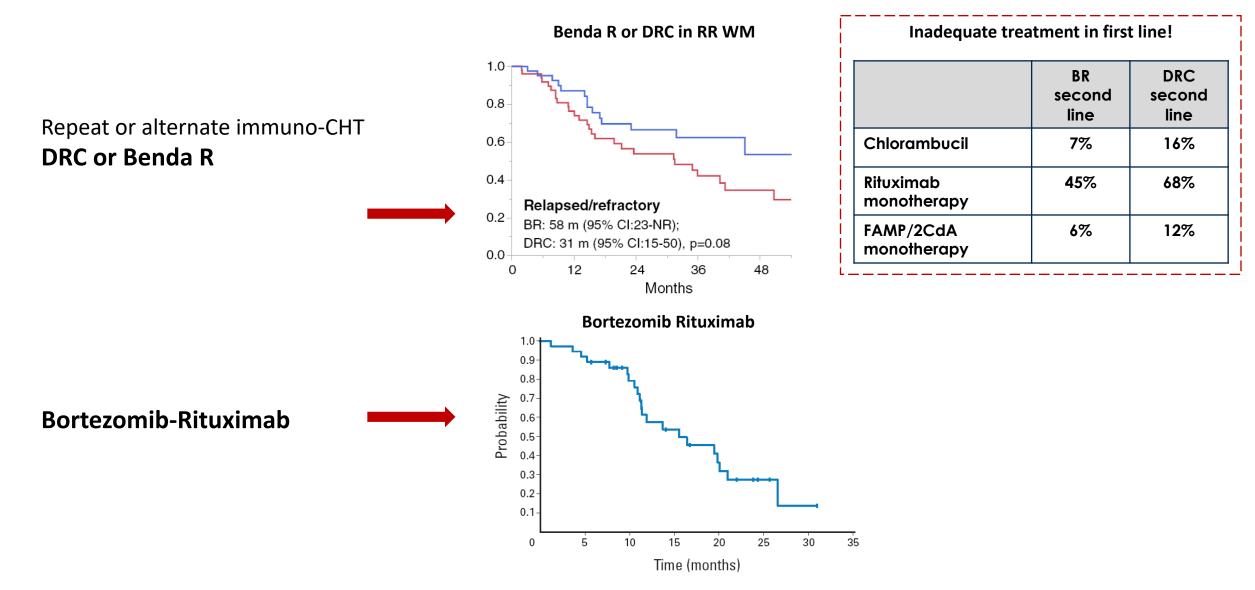
1:1 age-matched analysis of 246 pts *MYD88^{mut}* Ibrutinib (n=123) BR (n=123) Significant higher responses with BR Discontinuation due to AE: 13% BR and 33% ibrutinib




AE, adverse event; BR, bendamustine–rituximab; CI, confidence interval; HR, hazard ratio; MUT, mutant; OS, overall survival; PFS, progression-free survival; pts, patients; TN, treatment-naive; WM, Waldenström's macroglobulinemia. Abeykoon JP et al. Abstract 7566 presented at the 2022 American Society of Clinical Oncology (ASCO) Annual Meeting; Chicago, IL, USA, June 3–7, 2022.

Fixed duration therapy in first line with target agents Venetoclax plus Ibrutinib

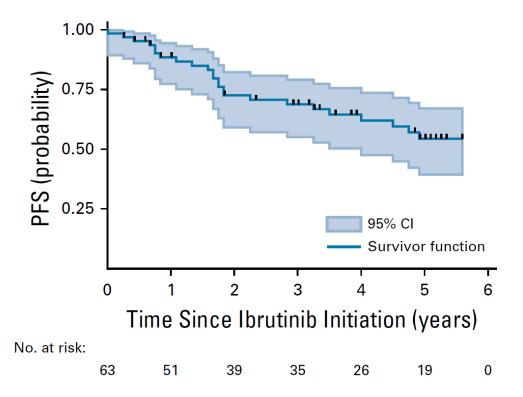
Response to therapy


Ibrutinib and venetoclax in previously untreated WM

	Adverse events	Grade 2	Grade 3	Grade 4	Grade 5	Total Safety
	Anemia	1	2		·	3
Adverse events	Atrial fibrillation	1	2	1		4
observed in ≥3	Diarrhea	8	1			9
patients and of	Reflux	10				10
clinical importance	Mucositis	7	2			9
n=45	Nausea	5				5
	Neutropenia	1	10	3		14
	Hyperphosphatemia	8				8
	Muscle/joint pain	14	2			16
	Skin rash	6				6
	Ventricular arrhythmia	1		1	2	4
	Laboratory TLS		2			2

Safety

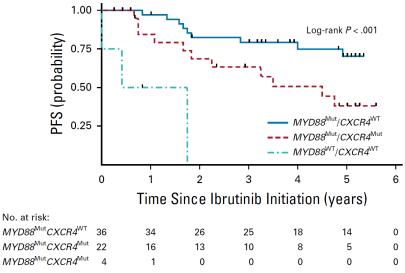
TLS: tumor lysis syndrome


Salvage treatment

ORIGINAL ARTICLE

Ibrutinib in Previously Treated Waldenström's Macroglobulinemia

Median study follow-up: 59 months Progression Free Survival


Symptomatic $R/R \ge 1$ line of therapy -

- Median n° of prior therapies: 2 (1-9)
- 40% pts refractory to most recent therapy

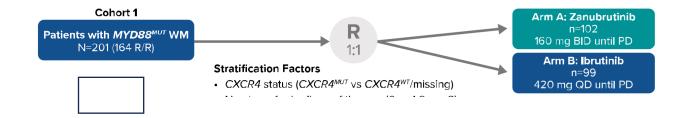
IBRUTINIB	420	mg
-----------	-----	----

Continuous therapy

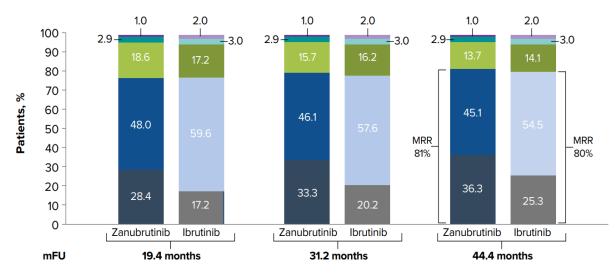
Variable	All	MYD88 ^{Mut} CXCR4 ^{NT}	MYD88 ^{Mut} CXCR4 ^{Mut}	MYD88 ^{wt} CXCR4 ^{wt}	P
No. of patients	63	36	22	4	
Overall response rate	57 (90.5)	36 (100.0)	19 (86.4)	2 (50.0)	< .0100
Major response rate	50 (79.4)	35 (97.2)	15 (68.2)	0 (0.0)	< .0001
Categorical responses					
No response	6 (9.5)	0 (0.0)	3 (13.6)	2 (50.0)	< .0001
Minor response	7 (11.1)	1 (2.8)	4 (18.2)	2 (50.0)	
Partial response	31 (49.2)	18 (50.0)	13 (59.1)	0 (0.0)	
Very good partial response	19 (30.2)	17 (47.2)	2 (9.1)	0 (0.0)	
Median time to response, months					
Major response (≥ partial response)	1.8	1.8	4.7	NA	.0200

Treon SP et al. J Clin Oncol 2021

Ibrutinib and Acalabrutinib studies in WM


Study	N° pts	ORR	CR+GVPR	PR	Median FU time	PFS	PFS
							CXCR4 ^{MUT} vs CXCR4 ^{WT}
Ibrutinib							
Treon et al 2015, 2021	63 RR	90.5%	30.2%	49.2%	59 m	Median PFS NR 5 year PFS rate, 54%	38% vs <mark>70%</mark> (5 y)
Trotman et al, 2021 Refractory to Rituximab based tx	31 RR	87%	29%	48%	58 m	Median PFS 39 m 60 m PFS rate 40%	18 m vs <mark>NR</mark> (5 y)
Ibrutinib+Rituximab							
Buske et al, 2022	41 RR	93%	34%	42%	50 m	Median PFS NR	63% vs <mark>72%</mark> (54 m)
						54 m PFS rate 70%	Not significant
Acalabrutinib°							
Owen et al, 2022	92 RR	95%	27%	57%	63.7 m	Median PFS: 67.5 m 66 m PFS rate 52%	Not done

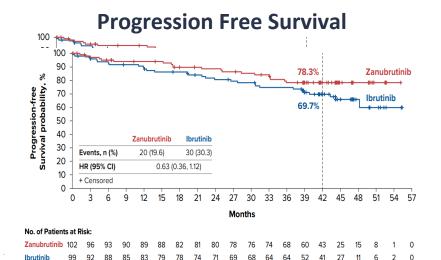
AEs of Ibrutinib and Acalabrutinib

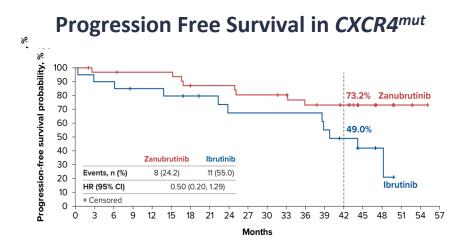

Ibrutinib monotherapy phase II study: Treon et al 2021	Ibrutinib plus R Innovate study: Buske et al 2022	Acalabrutinib Phase II study: Owen et al 2022
Median FU: 59 months	Median FU: 50 months	Median FU: 60 months
 ✓ 8% off-study due to AE ✓ 19% dose reductions 	 ✓ 11% off-study due to AE ✓ 23% dose reductions 	 ✓ 16% off-study due to AE
 Hematological AE Grade ≥ 3 Neutropenia: 15.9% Thrombocytopenia: 11.1% 	 Hematological AE Grade ≥ 3 Neutropenia: 13% Thrombocytopenia: 1% 	Hematological AE Grade ≥ 3 NA
 AE of interest with BTKi Atrial arrhythmia any grade 12.7% Hypertension grade ≥ 2: 6% Pneumonia grade ≥ 2: 8% 	 AE of clinical interest any grade Atrial fibrillation 19% Hypertension: 25% Infections ≥ 3: 29% 	 AE of clinical interest any grade Atrial fibrillation 12% Hypertension: 8% Infections ≥ 3: 33%

	Study	N° pts	FU	Discontinuations due to AE	Dose reductions
Abeykoon et al, 2019	Retrospective	80 TN/RR	19 m	16%	18%
Frustaci et al, 2022	Retrospective	206 R/R	27 m	11%	19%

ASPEN study, Phase III randomized study: Ibrutinib versus Zanubrutinib

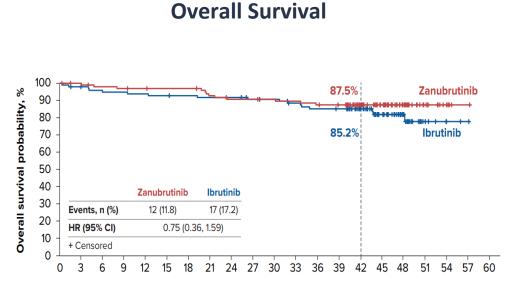
Responses by investigators


Median time to CR+VGPR: shorter for zanubrutinib 6.7 m vs ibrutinib: 16.6 m


Primary objective significant superior CR+VGPR According to IRC with zanubruitnib: not achieved

Responses by CXCR4

	СХС	CR4 ^{MUT}	CXCR4 ^{wT}		
	lbrutinib (n=20)	Zanubrutinib (n=33)	Ibrutinib (n=72)	Zanubrutinib (n=65)	
VGPR or better	2 (10.0)	7 (21.2)	22 (30.6)	29 (44.6)	
Major response	13 (65.0)	26 (78.8)	61 (84.7)	54 (83.1)	
Overall response	19 <mark>(</mark> 95.0)	30 (90.9)	68 (94.4)	63 (96.9)	
Time to major response, median (months)	6.6	3.4	2.8	2.8	
Time to VGPR, median (months)	31.3	11.1	11.3	6.5	


ASPEN Phase III randomized study: Ibrutinib versus Zanubrutinib

No. of Patients at Risk:

Zanubrutinib	33	31	31	30	30	30	26	26	26	24	24	23	20	19	17	10	6	3	1	0
Ibrutinib	20	18	18	16	16	15	14	13	11	11	11	11	11	9	7	4	2	0		

Months

No. of Patients at Risk:

Zanubrutinib	102	100	97	96	95	94	94	89	86	86	85	84	82	80	65	49	27	13	5	1	0
Ibrutinib	99	96	93	92	91	90	89	88	88	85	84	80	77	76	62	43	21	7	3	1	0

Zanubrutinib trends favorable for PFS versus ibrutinib in both CXCR4^{NS} And CXCR4^{FS}

PFS in CXCR4^{NS} vs CXCR4^{FS} PFS in CXCR4^{NS} vs CXCR4^{WT} Progression-Free Survival Pr.. Progression-Free Survival Probability 70 -<u>60</u> • Ibr CXCR4 NS Ibr CXCR4 NS Zanu CXCR4 NS Zanu CXCR4 NS Ibr CXCR4 FS Ibr CXCR4 WT Zanu CXCR4 FS Zanu CXCR4 WT + Censored Censored 0 -Months Months No. of Subjects at Risk No. of Subjects at Risk Ibr CXCR4 NS Zanu CXCR4 NS 14 49 40 34 26 23 Ibr CXCR4 WT 72

Mutation determined by NGS; NGS results were available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm.

Zanubrutinib shows deeper and faster responses and favorable PFS versus ibrutinib in WM with TP53^{MUT}

		h <i>MYD88^{M∪T}</i> th ibrutinib	Patients with <i>MYD88^{MUT}</i> treated with zanubrutinib				
Response	<i>TP53</i> ^{w⊤} (n=70)	<i>ТР53</i> м∪т (n=22)	<i>TP53</i> ^{w⊤} (n=72)	<i>TP53</i> ^{м∪⊤} (n=26)			
VGPR or better, n (%)	21 (30.0)	3 (13.6)	27 (37.5)	9 (34.6)			
MR, n (%)	60 (85.7)*	14 (63.6)*	59 (81.9)	21 (80.8)			
Median time to VGPR or better (min, max), months	11.4 (2.0, 49.9)	24.9 (5.6, 46.9)	6.5 (1.9, 42.0)	11.1 (3.0, 26.0)			
Median time to MR (min, max), months	2.9 (0.9, 49.8)	3.0 (1.0, 13.8)	2.8 (0.9, 49.8)	2.8 (1.0, 5.6)			
PFS Events, n (%) ^b Event-free rate at 42 months, % <i>P</i> value ^c	18 (25.7%) 72.1	11 (50.0%) 57.9 0.027	10 (13.8%) 84.6 -	9 (34.6%) 62.0 0.120			

Data cutoff: October 31, 2021.

Bold text indicates >10% difference between MUT and WT. Bold red text highlights P value < 0.05.

*P value <0.05, based on a logistic regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) statuses as covariates. WT is the reference group.

^aMutation determined by NGS and available for 92 patients in the ibrutinib arm and 98 patients in the zanubrutinib arm. ^bIncludes the number of progressive disease or death.

estimated using a Cox regression model with CXCR4 (WT, FS, NS), TP53 (WT, MUT), and TERT (WT, MUT) mutational status as covariates. WT is the reference group.

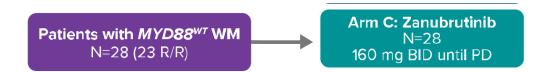
MR, major response; MUT, mutant; PFS, progression-free survival; *MYD88*, myeloid differentiation primary response 88 gene; NGS, next-generation sequencing; *TERT*, telomerase reverse transcriptase gene; *TP53*, tumor protein P53 gene; VGPR, very good partial response; WT, wild type.

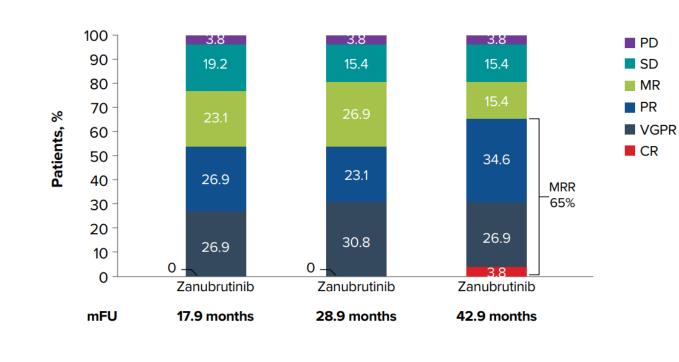
ASPEN Phase III randomized study: Ibrutinib versus Zanubrutinib

Patients disposition

Long term toxicity

	Co	hort 1
Category, n (%)	lbrutinib (n=98)	Zanubrutinib (n=101)
Patients with ≥1 AE	98 (100.0)	100 (99.0)
Grade ≥3	71 (72.4)	75 (74.3)
Serious	49 (50.0)	57 (56.4)
AE leading to death	5 (5.1)ª	3 (3.0) ^ь
AE leading to treatment discontinuation	20 (20.4) ^d	9 (8.9) ^e
AE leading to dose reduction	26 (26.5)	16 (15.8)
AE leading to dose held	62 (63.3)	63 (62.4)
COVID-19–related AE	4 (4.1)	4 (4.0)

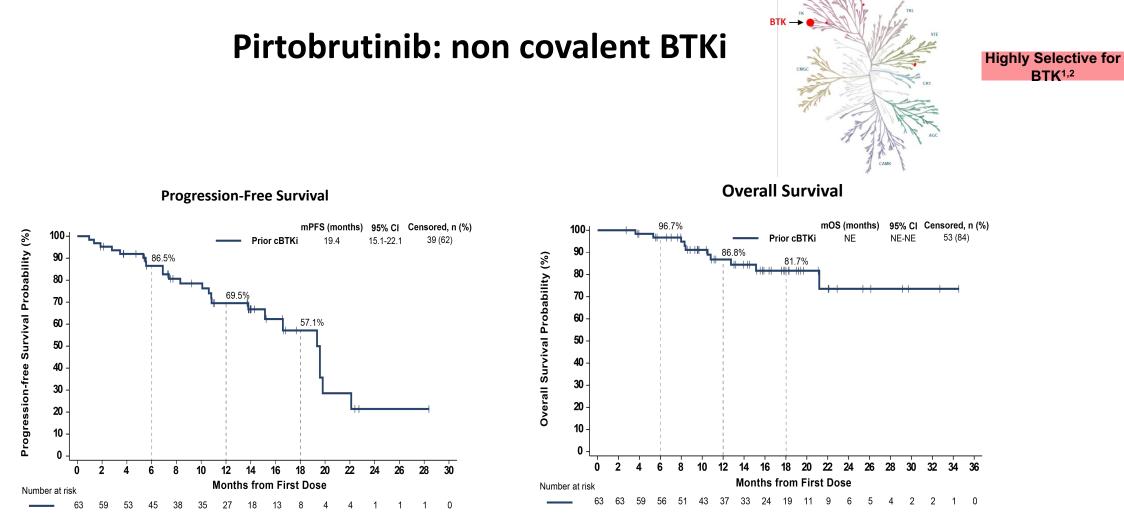

	All	grades	Gr	ade ≥3
AEs,ª n (%)	lbrutinib (n=98)	Zanubrutinib (n=101)	lbrutinib (n=98)	Zanubrutinib (n=101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension*	25 (25.5)	15 (14.9)	20 (20.4)*	10 (9.9)
Atrial fibrillation/flutter*	23 (23.5)*	8 (7.9)	8 (8.2)*	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia ^{*b}	20 (20.4)	35 (34.7)*	10 (10.2)	24 (23.8)*
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/ nonskin cancers	17 (17.3)/ 6 (6.1)	17 (16.8)/ 6 (5.9)	3 (3.1)/ 3 (3.1)	6 (5.9)/ 4 (4.0)


Bold text indicates rate of AEs with ≥10% (all grades) or ≥5% (grade ≥3) difference between arms.

Data cutoff: October 31, 2021. *Descriptive purposes only, 1-sided P ≤ 0.025 in rate difference in all grades and/or grade ≥3.

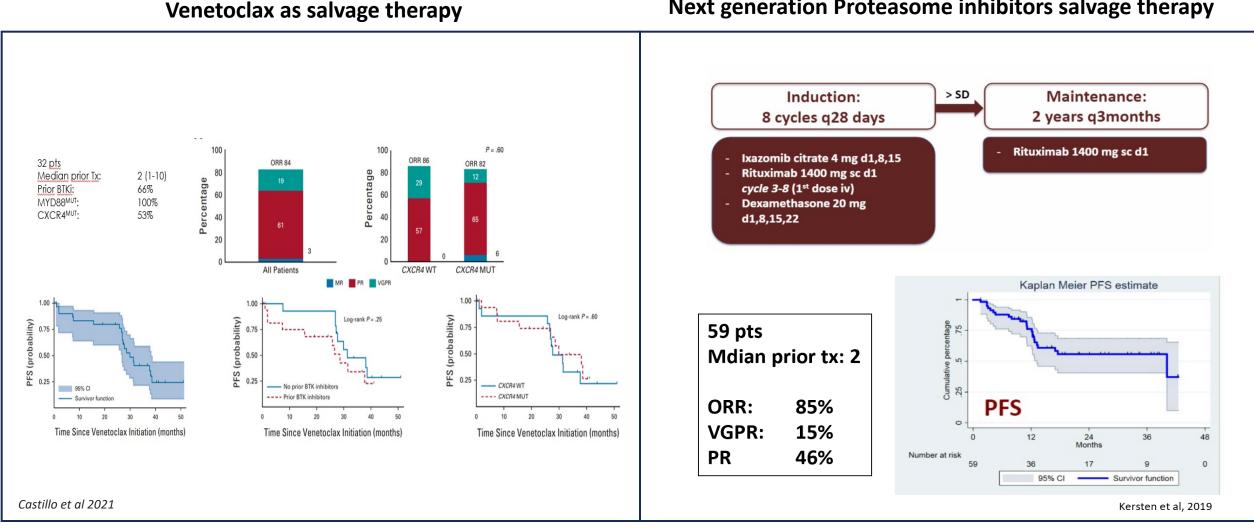
^aAE categories (grouped terms) of preferred terms by Medical Dictionary for Regulatory Activities v24.0. ^bIncluding preferred terms of neutropenia, neutrophil count decreased, febrile neutropenia, and neutropenic sepsis.

ASPEN study: Cohort 2 *MYD88^{WT}* (Zanubrutinib monotherapy)



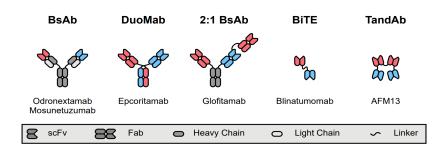
At 42 n	nonths:	
PFS:	53.8% (95% CI: 33.3, 70.6)	
OS:	83.9% (95% CI: 62.6, 93.7)	

Responses Overtime


What comes next in WM?

• The median follow-up for PFS and OS in patients who received prior cBTKi was 14 and 16 months, respectively

• 55.6% (35/63) of patients who received prior cBTKi remain on pirtobrutinib


Effective salvage treatments (currently not in development)

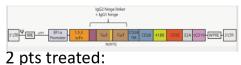
Next generation Proteasome inhibitors salvage therapy

Near Future treatments

Bispecific Ab

- ✓ Active in high grade and low grade lymhomas heavly pretreated
- ✓ Few pts with WM inlcuded in studies

Ansell S. IWWM 2022



- ✓ No <u>approved</u> CAR-T for WM treatment
- ✓ anti-WM activity in second-generation anti-CD19 CAR T cells
 3 pts treated:

treatment was <u>welltolerated</u> only g 1-2 toxicities

responses were seen in all three patients

✓ CD20 CAR-T (MB-106) (third generation targeted CAR)

responses were seen in all patients

FDA has granted orphan drug designation to MB-106, for the treatment of patient with WM

Shadman M. IWWM 2022

Palomba et al. 2021

CONCLUSIONS

- TN patients:
 - Immuno-chemotherapy remains treatment of choice
 - Zanubrutinib in pts unsuitable for immuno-CHT (consider genotype)
- R/R patients:
 - BTKi treatment of choice:
 - consider genotype (better outcomes with zanubruitnib in high risk pts)
 - patients comorbidities (better tollerability with zanubruitnib)
- IBRUTINIB/ZANUBRUTINIB refractory pts:
 - pirtobrutinib
- UNMET NEED:
 - salvage after BTKi failures

